Visualizations of the ECCO Project's 1/48° MITgcm Simulation (aka llc4320)

This page provides access to precomputed visualizations of the Estimating the Circulation and Climate of the Ocean (ECCO, https://ecco-group.org) Project's 1/48° Massachusetts Institute of Technology general circulation model (MITgcm, https://mitgcm.org) simulation, a 14-month global simulation of the ocean (September 2011 to November 2012) that resolves internal tides and admits submesoscale and internal-gravity-wave variability.

The visualizations make accessible nearly all of the output from the simulation: all scalars, all levels, and all regions except for the arctic polar cap. A number of different resolutions are available, from single animations that show a global view to regional closeups that are nearly the same resolution as the simulation.

The different resolutions are organized into three series of animations. The lowest resolution series is a global view. The medium resolution series has 8 views that roughly divide the domain into eighths, and is organized into two rows each having 4 columns. The most detailed resolution series has 128 different views organized into 8 rows and 16 columns. Each series of views is available in two or three different animation resolution sizes, ranging from about 800 by 600 to sizes that only fit on a 4K monitor. Finally, the animations are available with different time steps, ranging from one hour time steps to one day time steps.

Use the menus below to select the animation series, scalar value, and simulation level (depth). A scalar must be selected before the Level menu is populated as the number of available levels vary by scalar. Selecting a 2D scalar automatically selects the single available level. Once the three selections are made, an image map appears below that shows thumbnails of each available view. Clicking on a thumbnail will bring you to a page that has links to animations for the available resolutions and time steps.



 
Series Scalar Level

 

Note: The menus are sometimes unresponsive when using Safari and returning to this page using the browser Back function. The work-around is to reload the page or to reselect a different value in one of the working menus.


Model output from the 1/48° MITgcm simulation is available at https://data.nas.nasa.gov/ecco/. Technical aspects of the visualization are described in Ellsworth et al. (2017). The MITgcm is described in Marshall et al. (1997 a, b). The 1/48° simulation has resulted in more than 66 science publications (see References).

References

Arbic, B. K., Alford, M. H., Ansong, J. K., Buijsman, M. C., Ciotti, R. B., Farrar, J. T., Hallberg, R. W., Henze, C. E., Hill, C. N., Luecke, C. A., Menemenlis, D., Metzger, E. J., Müeller, M., Nelson, A. D., Nelson, B. C., Ngodock, H. E., Ponte, R. M., Richman, J. G., Savage, A. C., … Zhao, Z. (2018). A Primer on Global Internal Tide and Internal Gravity Wave Continuum Modeling in HYCOM and MITgcm. In E. P. Chassignet, A. Pascual, J. Tintoré, & J. Verron (Eds.), New Frontiers in Operational Oceanography (pp. 30–392). GODAE OceanView https://doi.org/10.17125/gov2018.ch13

Ardhuin, F., Aksenov, Y., Benetazzo, A., Bertino, L., Brandt, P., Caubet, E., Chapron, B., Collard, F., Cravatte, S., Delouis, J. M., Dias, F., Dibarboure, G., Gaultier, L., Johannessen, J., Korosov, A., Manucharyan, G., Menemenlis, D., Menendez, M., Monnier, G., … Xie, J. (2018). Measuring currents, ice drift, and waves from space: The Sea surface KInematics Multiscale monitoring (SKIM) concept. Ocean Sci., 14(3), 337–354. https://doi.org/10.5194/os-14-337-2018

Ardhuin, F., Brandt, P., Gaultier, L., Donlon, C., Battaglia, A., Boy, F., Casal, T., Chapron, B., Collard, F., Cravatte, S., Delouis, J.-M., De Witte, E., Dibarboure, G., Engen, G., Johnsen, H., Lique, C., Lopez-Dekker, P., Maes, C., Martin, A., … Stammer, D. (2019). SKIM, a Candidate Satellite Mission Exploring Global Ocean Currents and Waves. Frontiers in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00209

Ardhuin, F., Gille, S. T., Menemenlis, D., Rocha, C. B., Rascle, N., Chapron, B., Gula, J., & Molemaker, J. (2017). Small-scale open ocean currents have large effects on wind wave heights. Journal of Geophysical Research: Oceans, 122(6), 4500–4517. https://doi.org/10.1002/2016JC012413

Cao, H., Jing, Z., Fox-Kemper, B., Yan, T., & Qi, Y. (2019). Scale Transition From Geostrophic Motions to Internal Waves in the Northern South China Sea. Journal of Geophysical Research: Oceans, 124(12), 9364–9383. https://doi.org/10.1029/2019JC015575

Chereskin, T. K., Rocha, C. B., Gille, S. T., Menemenlis, D., & Passaro, M. (2019). Characterizing the Transition From Balanced to Unbalanced Motions in the Southern California Current. Journal of Geophysical Research: Oceans, 124(3), 2088–2109. https://doi.org/10.1029/2018JC014583

Dong, J., Fox-Kemper, B., Zhang, H., & Dong, C. (2020). The Scale of Submesoscale Baroclinic Instability Globally. Journal of Physical Oceanography, 50(9), 2649–2667. https://doi.org/10.1175/JPO-D-20-0043.1

Dong, J., Fox-Kemper, B., Zhang, H., & Dong, C. (2020). The Seasonality of Submesoscale Energy Production, Content, and Cascade. Geophysical Research Letters, 47(6). https://doi.org/10.1029/2020GL087388

Ellsworth, D. A., Henze, C. E., & Nelson, B. C. (2017). Interactive visualization of high-dimensional petascale ocean data. 2017 IEEE 7th Symposium on Large Data Analysis and Visualization (LDAV), 36–44. https://doi.org/10.1109/LDAV.2017.8231849

Erickson, Z. K. (2019). Physical Processes Leading to Export of Fixed Carbon Out of the Surface Ocean [California Institute of Technology]. https://resolver.caltech.edu/CaltechTHESIS:06092019-160257514

Erickson, Z. K., Thompson, A. F., Callies, J., Yu, X., Garabato, A. N., & Klein, P. (2020). The Vertical Structure of Open-Ocean Submesoscale Variability during a Full Seasonal Cycle. Journal of Physical Oceanography, 50(1), 145–160. https://doi.org/10.1175/JPO-D-19-0030.1

Flexas, M. M., Thompson, A. F., Torres, H. S., Klein, P., Farrar, J. T., Zhang, H., & Menemenlis, D. (2019). Global Estimates of the Energy Transfer From the Wind to the Ocean, With Emphasis on Near-Inertial Oscillations. Journal of Geophysical Research: Oceans, 124(8), 5723–5746. https://doi.org/10.1029/2018JC014453

Fukumori, I., Fenty, I., Forget, G., Heimbach, P., King, C., & Nguyen, A. (2018). Data sets used in ECCO Version 4 Release 3. http://hdl.handle.net/1721.1/120472

Fukumori, I., Wang, O., Fenty, I., Forget, G., Heimbach, P., & Ponte, R. M. (2017). ECCO Version 4 Release 3. https://doi.org/1721.1/110380

Hutter, N. (2019). Resolving Leads in Sea-Ice Models: New Analysis Methods for Frontier Resolution Arctic Simulations [Universität Bremen]. https://d-nb.info/1202334180/34

Hutter, N., Losch, M., & Menemenlis, D. (2018). Scaling Properties of Arctic Sea Ice Deformation in a High-Resolution Viscous-Plastic Sea Ice Model and in Satellite Observations. Journal of Geophysical Research: Oceans, 123(1), 672–687. https://doi.org/10.1002/2017JC013119

Klein, P., Lapeyre, G., Siegelman, L., Qiu, B., Fu, L., Torres, H., Su, Z., Menemenlis, D., & Le Gentil, S. (2019). Ocean-Scale Interactions From Space. Earth and Space Science, 2018EA000492. https://doi.org/10.1029/2018EA000492

Lin, H., Liu, Z., Hu, J., Menemenlis, D., & Huang, Y. (2020). Characterizing meso- to submesoscale features in the South China Sea. Progress in Oceanography, 188, 102420. https://doi.org/10.1016/j.pocean.2020.102420

Luecke, C. A., Arbic, B. K., Richman, J. G., Shriver, J. F., Alford, M. H., Ansong, J. K., Bassette, S. L., Buijsman, M. C., Menemenlis, D., Scott, R. B., Timko, P. G., Voet, G., Wallcraft, A. J., & Zamudio, L. (2020). Statistical Comparisons of Temperature Variance and Kinetic Energy in Global Ocean Models and Observations: Results from Mesoscale to Internal Wave Frequencies. Journal of Geophysical Research: Oceans. https://doi.org/10.1029/2019JC015306

Marshall, J., Adcroft, A., Hill, C., Perelman, L., & Heisey, C. (1997b). A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research: Oceans, 102(C3), 5753–5766. https://doi.org/10.1029/96JC02775

Marshall, J., Hill, C., Perelman, L., & Adcroft, A. (1997a). Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. Journal of Geophysical Research: Oceans, 102(C3), 5733–5752. https://doi.org/10.1029/96JC02776

Mauzole, Y. L., Torres, H. S., & Fu, L. -L. (2020). Patterns and Dynamics of SST Fronts in the California Current System. Journal of Geophysical Research: Oceans, 125(2). https://doi.org/10.1029/2019JC015499

Mazloff, M. R., Cornuelle, B., Gille, S. T., & Wang, J. (2020). The Importance of Remote Forcing for Regional Modeling of Internal Waves. Journal of Geophysical Research: Oceans, 125(2). https://doi.org/10.1029/2019JC015623

Nakayama, Y., Manucharyan, G., Zhang, H., Dutrieux, P., Torres, H. S., Klein, P., Seroussi, H., Schodlok, M., Rignot, E., & Menemenlis, D. (2019). Pathways of ocean heat towards Pine Island and Thwaites grounding lines. Scientific Reports, 9(1), 16649. https://doi.org/10.1038/s41598-019-53190-6

Nakayama, Y., Menemenlis, D., Zhang, H., Schodlok, M., & Rignot, E. (2018). Origin of Circumpolar Deep Water intruding onto the Amundsen and Bellingshausen Sea continental shelves. Nat. Commun., 9(1), 3403. https://doi.org/10.1038/s41467-018-05813-1

Nelson, A. D., Arbic, B. K., Menemenlis, D., Peltier, W. R., Alford, M. H., Grisouard, N., & Klymak, J. M. (2020). Improved Internal Wave Spectral Continuum in a Regional Ocean Model. Journal of Geophysical Research: Oceans. https://doi.org/10.1029/2019JC015974

Ngeve, M. N., Van der Stocken, T., Menemenlis, D., Koedam, N., & Triest, L. (2016). Contrasting Effects of Historical Sea Level Rise and Contemporary Ocean Currents on Regional Gene Flow of Rhizophora racemosa in Eastern Atlantic Mangroves. PLoS ONE, 11(3), e0150950. https://doi.org/10.1371/journal.pone.0150950

Ngeve, M. N., Van der Stocken, T., Menemenlis, D., Koedam, N., & Triest, L. (2017). Hidden founders? Strong bottlenecks and fine-scale genetic structure in mangrove populations of the Cameroon Estuary complex. Hydrobiologia, 803(1), 189–207. https://doi.org/10.1007/s10750-017-3369-y

Nguyen, A. T., Heimbach, P., Garg, V. V., Ocaña, V., Lee, C., & Rainville, L. (2020). Impact of Synthetic Arctic Argo-Type Floats in a Coupled Ocean–Sea Ice State Estimation Framework. Journal of Atmospheric and Oceanic Technology, 37(8), 1477–1495. https://doi.org/10.1175/JTECH-D-19-0159.1

Pan, Y., Arbic, B. K., Nelson, A. D., Menemenlis, D., Peltier, W. R., Xu, W., & Li, Y. (2020). Numerical investigation of mechanisms underlying oceanic internal gravity wave power-law spectra. Journal of Physical Oceanography, 1–53. https://doi.org/10.1175/JPO-D-20-0039.1

Pratt, L. J., Voet, G., Pacini, A., Tan, S., Alford, M. H., Carter, G. S., Girton, J. B., & Menemenlis, D. (2019). Pacific Abyssal Transport and Mixing: Through the Samoan Passage versus around the Manihiki Plateau. Journal of Physical Oceanography, 49(6), 1577–1592. https://doi.org/10.1175/JPO-D-18-0124.1

Qiu, B., Chen, S., Klein, P., Torres, H., Wang, J., Fu, L.-L., & Menemenlis, D. (2020). Reconstructing Upper-Ocean Vertical Velocity Field from Sea Surface Height in the Presence of Unbalanced Motion. Journal of Physical Oceanography, 50(1), 55–79. https://doi.org/10.1175/JPO-D-19-0172.1

Qiu, B., Chen, S., Klein, P., Wang, J., Torres, H. S., Fu, L.-L., & Menemenlis, D. (2018). Seasonality in Transition Scale from Balanced to Unbalanced Motions in the World Ocean. J. Phys. Oceanogr., 48(3), 591–605. https://doi.org/10.1175/JPO-D-17-0169.1

Rocha, C. B. (2018). The turbulent and wavy upper ocean: transition from geostrophic flows to internal waves and stimulated generation of near-inertial waves [Univesrity of California, San Diego]. https://escholarship.org/uc/item/4m893890

Rocha, C. B., Chereskin, T. K., Gille, S. T., & Menemenlis, D. (2016). Mesoscale to Submesoscale Wavenumber Spectra in Drake Passage. Journal of Physical Oceanography, 46(2), 601–620. https://doi.org/10.1175/JPO-D-15-0087.1

Rocha, C. B., Gille, S. T., Chereskin, T. K., & Menemenlis, D. (2016). Seasonality of submesoscale dynamics in the Kuroshio Extension. Geophys. Res. Lett., 43(21), 11304–11311. https://doi.org/10.1002/2016GL071349

Ruan, X. (2019). Oceanic Bottom Boundary Layers and Abyssal Overturning Circulation. California Institute of Technology.

Savage, A. (2017). Sea Surface Height Signatures of Internal Gravity Waves [The University of Michigan]. https://deepblue.lib.umich.edu/bitstream/handle/2027.42/138555/savagea_1.pdf?sequence=1&isAllowed=y

Savage, A. C., Arbic, B. K., Alford, M. H., Ansong, J. K., Farrar, J. T., Menemenlis, D., O’Rourke, A. K., Richman, J. G., Shriver, J. F., Voet, G., Wallcraft, A. J., & Zamudio, L. (2017). Spectral decomposition of internal gravity wave sea surface height in global models. J. Geophys. Res. Ocean., 122. https://doi.org/10.1002/2017JC013009

Siegelman, L. (2020). Energetic Submesoscale Dynamics in the Ocean Interior. Journal of Physical Oceanography, 50(3), 727–749. https://doi.org/10.1175/JPO-D-19-0253.1

Siegelman, L., Klein, P., Rivière, P., Thompson, A. F., Torres, H. S., Flexas, M., & Menemenlis, D. (2020). Enhanced upward heat transport at deep submesoscale ocean fronts. Nature Geoscience 13(1), 50–55. https://doi.org/10.1038/s41561-019-0489-1

Siegelman, L., Klein, P., Thompson, A. F., Torres, H. S., & Menemenlis, D. (2020). Altimetry-Based Diagnosis of Deep-Reaching Sub-Mesoscale Ocean Fronts. Fluids, 5(3), 145. https://doi.org/10.3390/fluids5030145

Sinha, A. (2019). Temporal Variability in Ocean Mesoscale and Submesoscale Turbulence. Columbia University.

Sinha, A., Balwada, D., Tarshish, N., & Abernathey, R. (2019). Modulation of Lateral Transport by Submesoscale Flows and Inertia-Gravity Waves. Journal of Advances in Modeling Earth Systems, 2018MS001508. https://doi.org/10.1029/2018MS001508

Stewart, A. L., Klocker, A., & Menemenlis, D. (2018). Circum-Antarctic Shoreward Heat Transport Derived From an Eddy- and Tide-Resolving Simulation. Geophysical Research Letters, 45(2), 834–845. https://doi.org/10.1002/2017GL075677

Stewart, A. L., Klocker, A., & Menemenlis, D. (2019). Acceleration and Overturning of the Antarctic Slope Current by Winds, Eddies, and Tides. Journal of Physical Oceanography, 49(8), 2043–2074. https://doi.org/10.1175/JPO-D-18-0221.1

Strobach, E., Molod, A., Trayanov, A., Forget, G., Campin, J.-M., Hill, C., & Menemenlis, D. (2020). Three-to-Six-Day Air-Sea Oscillation in Models and Observations. Geophysical Research Letters, e2019GL085837. https://doi.org/10.1029/2019GL085837

Su, Z., Torres, H., Klein, P., Thompson, A. F., Siegelman, L., Wang, J., Menemenlis, D., & Hill, C. (2020). High-Frequency Submesoscale Motions Enhance the Upward Vertical Heat Transport in the Global Ocean. Journal of Geophysical Research: Oceans, 125(9). https://doi.org/10.1029/2020JC016544

Su, Z., Wang, J., Klein, P., Thompson, A. F., & Menemenlis, D. (2018). Ocean submesoscales as a key component of the global heat budget. Nat. Commun., 9(775), 1–8. https://doi.org/10.1038/s41467-018-02983-w

Thompson, A. F., Stewart, A. L., Spence, P., & Heywood, K. J. (2018). The Antarctic Slope Current in a Changing Climate. Reviews of Geophysics, 56(4), 741–770. https://doi.org/10.1029/2018RG000624

Torres, H. S., Klein, P., Menemenlis, D., Qiu, B., Su, Z., Wang, J., Chen, S., & Fu, L.-L. (2018). Partitioning ocean motions into balanced motions and internal gravity waves: A modeling study in anticipation of future space missions. J. Geophys. Res. Ocean., 123(11), 8084–8105. https://doi.org/10.1029/2018JC014438

Torres, H. S., Klein, P., Siegelman, L., Qiu, B., Chen, S., Ubelmann, C., Wang, J., Menemenlis, D., & Fu, L. -L. (2019). Diagnosing Ocean-Wave-Turbulence Interactions From Space. Geophysical Research Letters, 46(15), 8933–8942. https://doi.org/10.1029/2019GL083675

Triest, L., Sierens, T., Menemenlis, D., & Van der Stocken, T. (2018). Inferring Connectivity Range in Submerged Aquatic Populations (Ruppia L.) Along European Coastal Lagoons From Genetic Imprint and Simulated Dispersal Trajectories. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00806

Ubelmann, C., Dibarboure, G., & Dubois, P. (2018). A Cross-Spectral Approach to Measure the Error Budget of the SWOT Altimetry Mission over the Ocean. Journal of Atmospheric and Oceanic Technology, 35(4), 845–857. https://doi.org/10.1175/JTECH-D-17-0061.1

Van der Stocken, T., & Menemenlis, D. (2017). Modelling mangrove propagule dispersal trajectories using high-resolution estimates of ocean surface winds and currents. Biotropica, 49(4), 472–481. https://doi.org/10.1111/btp.12440

Van der Stocken, T., Carroll, D., Menemenlis, D., Simard, M., & Koedam, N. (2018). Global-scale dispersal and connectivity in mangroves. Proceedings of the National Academy of Sciences, 201812470. https://doi.org/10.1073/pnas.1812470116

Vazquez-Cuervo, J., Torres, H. S., Menemenlis, D., Chin, T. M., & Armstrong, E. M. (2017). Relationship between SST gradients and upwelling off Peru and Chile: model/satellite data analysis. Int. J. Remote Sens., 38(23), 6599–6622. https://doi.org/10.1080/01431161.2017.1362130

Viglione, G. A., Thompson, A. F., Flexas, M. M., Sprintall, J., & Swart, S. (2018). Abrupt Transitions in Submesoscale Structure in Southern Drake Passage: Glider Observations and Model Results. Journal of Physical Oceanography, 48(9), 2011–2027. https://doi.org/10.1175/JPO-D-17-0192.1

Villas Bôas, A. B., Cornuelle, B. D., Mazloff, M. R., Gille, S. T., & Ardhuin, F. (2020). Wave-Current Interactions at Meso and Submesoscales: Insights from Idealized Numerical Simulations. Journal of Physical Oceanography, 1–45. https://doi.org/10.1175/JPO-D-20-0151.1

Wang, J., & Fu, L.-L. (2019). On the Long-Wavelength Validation of the Swot Karin Measurement. Journal of Atmospheric and Oceanic Technology. https://doi.org/10.1175/jtech-d-18-0148.1

Wang, J., Fu, L.-L., Torres, H. S., Chen, S., Qiu, B., & Menemenlis, D. (2019). On the Spatial Scales to be Resolved by the Surface Water and Ocean Topography Ka-Band Radar Interferometer. Journal of Atmospheric and Oceanic Technology, 36(1), 87–99. https://doi.org/10.1175/JTECH-D-18-0119.1

Wang, J., Qiu, B., Menemenlis, D., Thomas Farrar, J., Chao, Y., Thompson, A. F., Flexas, M. M., Fu, L. L., Qiu, B., Menemenlis, D., Thomas Farrar, J., Chao, Y., Thompson, A. F., & Flexas, M. M. (2018). An observing system simulation experiment for the calibration and validation of the Surface Water Ocean Topography Sea surface height measurement using in situ platforms. J. Atmos. Ocean. Technol., 35(2), 281–297. https://doi.org/10.1175/JTECH-D-17-0076.1

Wineteer, A. G. (2016). Towards Improved Estimates of Upper Ocean Energetics [California Polytechnic State University]. https://doi.org/10.15368/theses.2016.19

Wu, F., Cornillon, P., Guan, L., & Kilpatrick, K. (2019). Long-Term Variations in the Pixel-to-Pixel Variability of NOAA AVHRR SST Fields from 1982 to 2015. Remote Sensing, 11(7), 844. https://doi.org/10.3390/rs11070844

Yang, Y., McWilliams, J. C., Liang, X. S., Zhang, H., Weisberg, R. H., Liu, Y., & Menemenlis, D. (2020). Spatial and Temporal Characteristics of the Submesoscale Energetics in the Gulf of Mexico. Journal of Physical Oceanography. https://doi.org/10.1175/JPO-D-20-0247.1

Yu, X., Naveira Garabato, A. C., Martin, A. P., Buckingham, C. E., Brannigan, L., & Su, Z. (2019). An Annual Cycle of Submesoscale Vertical Flow and Restratification in the Upper Ocean. Journal of Physical Oceanography, JPO-D-18-0253.1. https://doi.org/10.1175/JPO-D-18-0253.1

Yu, X., Ponte, A. L., Elipot, S., Menemenlis, D., Zaron, E. D., & Abernathey, R. (2019). Surface Kinetic Energy Distributions in the Global Oceans From a High-Resolution Numerical Model and Surface Drifter Observations. Geophysical Research Letters, 46(16), 9757–9766. https://doi.org/10.1029/2019GL083074

Zhao, Z., Wang, J., Menemenlis, D., Fu, L.-L., Chen, S., & Qiu, B. (2019). Decomposition of the multimodal multidirectional M 2 internal tide field. Journal of Atmospheric and Oceanic Technology, JTECH-D-19-0022.1. https://doi.org/10.1175/JTECH-D-19-0022.1